
Code Camp at Knowles: Teaching Teachers to Program

Code Camp 2016 was a three-day professional
development workshop where Knowles Fellows
learned about programming for the classroom. In
it, teachers learned how to use JavaScript to
build web-based programs and control Google
spreadsheets, and how to use programming
concepts and computational thinking to teach
math and science content.
In the previous two blog posts, I outlined why I think programming has a
place in all classrooms (not just computer science ones) and how we
approached designing and teaching the Code Camp workshop. This
time, I would like to share two example problems that our teachers worked on
during the workshop, both of which addressed key elements of computational
thinking. In the first, our participants used JavaScript to add functionality to a
class spreadsheet for creating fair groups from a class list. The second example
utilized and highlighted many aspects of computational thinking without actually
involving programming.

To start with a programming example, consider the problem of breaking students
into groups. Imagine Dr. Jones needs to divide the 30 students in her chemistry
class into six groups for a lab. She wants to make sure the groups are
heterogeneous in terms of gender, likelihood to struggle with the material, and
ethnicity. Those criteria for “goodness” (often called a utility function) are not
always explicitly discussed; getting them out in the open is an important part of
the software design process.

For Code Camp, this was a programming problem we gave our teachers: create a
system that would take a list of names and an appropriate group size and convert
that list into a randomized group assignment. We approached it as a Google
sheets script, a fragment of JavaScript that can be run inside a spreadsheet, since

https://trellis.knowlesteachers.org/blog/code-camp-knowles-teaching-teachers-program
https://knowlesteachers.org/blog/computational-literacy-literacy-programming-professional-development-kstf-part-1-foundations
https://knowlesteachers.org/blog/computational-literacy-literacy-programming-professional-development-kstf-part-1-foundations
https://knowlesteachers.org/blog/programming-professional-development-knowles-teacher-initiative-made-code-camp
https://en.wikipedia.org/wiki/Utility

most teachers already use spreadsheets or spreadsheet-like gradebook programs,
and leveraging spreadsheets means we can focus on the randomizer algorithm
instead of worrying about persistently storing class lists and so on. To ease the
work, I wrote all of the code necessary for loading spreadsheet data into a
program and outputting from a program into a spreadsheet in an
example Google Sheet.

While it may sound a bit contrived, this is a programming challenge with which
the teachers in Code Camp enjoyed their engagement. There are a lot of different
kinds of extensions to this project that are possible as well. For example, the
program could be modified to make sure that the strongest students in class are
not all in the same group, or ensure that no group consists of students of all the
same gender. Furthermore, the project itself encapsulates some very important
programming skills: taking input in a list form, iterating over that list to create
some output value that conforms to a utility function, and outputting the new
value somewhere the user can see.

Once each group created a basic solution to the problem of randomly assigning
students to groups, we presented a list of potential extensions to the problem that
they could choose to explore. Those extensions were designed to have varying
levels of difficulty and appeal to different sorts of problem-solving.

Add a date to each output sheet so you can remember which is which
Ask user what group size they want
Ask user what to do with overflow students: do you want two groups of three
or one group of two?
Change groups to not include certain pairs who might distract each other
Don’t let students be in the same group as yesterday
Port the group assigner to the web using our HTML skills
Class scheduler – Each student has three preferences for a course, each
course has a limited number of participants. Pick a grouping that puts each
student into a desired course, optimizing for first choice.

For our non-programming task, we introduced computational thinking with a
seemingly straightforward problem: create a flowchart that represents the
decision-making process you go through to decide what you will wear for the day.

This task addresses a number of the principles of computational thinking, most
importantly: simulation (developing a model to imitate real-world processes),

https://docs.google.com/spreadsheets/d/1rcAXQOo-prmnMa4PUd9OmPi2kwDWJIVi56H8TwHRH0U/edit?usp=sharing

algorithm design (creating an ordered set of instructions for solving similar
problems or doing a task), and data representation (organizing data in
appropriate forms). It is also easily-approachable by people at many levels of
mathematical and scientific expertise, but has a number of surprisingly nuanced
outcomes.

If you take a moment to think about what your own flowchart may look like, try
answering some of these questions:

Does your process result in you wearing the same clothes over and over?
Does your process account for the weather or formal dress codes?
Does your process account for how you feel about your clothes?
Does your process result in color coordination between different parts of
your clothing?

Decision making, especially around everyday practices, is often the kind of thing
that seems simple enough at first thought, but becomes much more complicated
the more one thinks about it. Writing computer programs requires the
programmer to break everything down as far as possible, taking nothing for
granted.

Our Fellows created a number of flowcharts, which each encapsulate different
beliefs about what is important when making decisions about clothing.

Both of these projects (the group randomizer and clothing selection flowchart)
ended up expanding to become more than just a short activity during the
workshop. As previously noted, the Code Camp workshop included about two
hours each day for independent project work.

During independent work time, some of the Code Camp teachers expanded on the
clothing selection flowchart activity to convert it into an in-class activity they
could use with their students to introduce computational thinking processes. They
built more robust flowcharts for themselves and wrote a lesson for their students.

Other of the Code Camp teachers extended the group-assigner discussed above
and went in a completely different direction. What they wanted to build was a
random phone contact spreadsheet. They took the same tools (student list
spreadsheet and Google scripting) and created a project that would email them
(the teacher) one person from their class list that had not been contacted recently
as a reminder to do one home-call each evening, even for students who are doing

https://knowlesteachers.org/blog/programming-professional-development-knowles-teacher-initiative-made-code-camp

well. The email would include that student’s contact information, parent
information, and recent grade information, and would get automatically created
at the same time each evening by the spreadsheet. On the surface, this seems
quite different from the group randomizer, but from a programming perspective,
it is quite similar—take an input list, iterate over it doing stuff to it, and then put
the output somewhere the user can access it. In this case, send an email rather
than adding a new page to a spreadsheet.

Throughout the Code Camp workshop, we gave a large number of smaller
problems for everyone to explore. We then gave different extensions to each
problem, so people could decide what kinds of challenges they wanted to give
themselves, and we provided less-structured time so that they could focus on
specific domains of programming or classroom design. This is why I claim that
programming instruction is so amenable to problem-based learning models: we
can create scenarios where learners are engaged with problems of their own
choosing, at different levels of difficulty and with different pathways to success.
In every case, however, people are still engaging with core principles of computer
science and computational thinking: decision making, algorithms, utility
functions, input-output, randomization, logic, loops, and data representation.

